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SUMMARY 
The present paper describes a directionally adaptive finite element method for high-speed flows, using an edge- 
based error estimate on quadrilateral grids. The error of the numerical solution is estimated through its second 
derivatives and the resulting Hessian tensor is used to define a Riemannian metric. An improved mesh movement 
strategy, based on a spring analogy, but with no orthogonality constraints, is introduced to equidistribute the 
lengths of the edges of the elements in the defined metric. The grid adaptation procedure is validated on an 
analytical test case and the efficiency of the overall methodology is investigated on supersonic and hypersonic 
benchmarks. 
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1. INTRODUCTION 

The current interest in the area of high-speed flows has increased the need for advanced 
computational fluid dynamics (CFD) codes, which have become the primary tools for the prediction 
of aerothermal loads. Such flows are characterized by regions with steep directional gradients of flow 
variables, embedded in regions where the flow variables vary more smoothly. One approach for 
improving the solution accuracy of such problems is to apply grid adaptation techniques. 

Grid adaptation methods are mainly composed of an error estimate and an adaptive strategy such as 
mesh movement (r-method); mesh refinement/coarsening (h-method), higher-order interpolation @- 
method) or remeshing. Even when the same error estimate is used to assess the accuracy of a solution, 
the resulting adapted grid depends strongly on the selected adaptation strategy. Classical methods 
such as grid refinementIs2 produce isotropic meshes in which the length scales of each element are 
essentially the same. These methods are optimal only for those flow fields regions possessing nearly 
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equal gradients in all spatial directions. As a result, directional flow features such as shocks, contact 
discontinuities and boundary layers are not necessarily adapted efficiently and the number of 
elements needed to represent them may increase disproportionally with each isotropic refinement. 

An alternative approach would be to seek solutions on anisotropic meshes where more resolution is 
introduced along those directions with rapidly changing flow variables. This idea was introduced by 
Peraire et al.,3 who used an adaptive remeshing procedure that incorporated directional stretching for 
the solution of the 2D Euler equations on triangular gnds. Anisotropic grids may also be produced by 
coupling a mesh movement strategy with local isotropic refinement.4 Kornhuber and Roitzsch' 
proposed an anisotropic strategy based on directed refinement of pairs of triangular elements to 
resolve boundary layers. Recently Fortin et al.6 used a metric as a measure of error, coupled to an h-r 
strategy, to achieve directionally adapted unstructured grids with high aspect ratios. 

The above approaches have primarily been used on unstructured meshes. This trend is mainly 
dnven by the intrinsic ability of triangular elements in 2D and tetrahedral elements in 3D to deal with 
arbitrary complex geometries. In addition, such meshes provide a natural setting for the 
implementation of adaptive grid techniques. Unstructured adaptation algorithms can yield highly 
stretched grids as well as locally refined/coarsened meshes. In contrast, most refinement techniques 
for structured avoid propagating the refinement to the boundaries by allowing sides to have 
hanging nodes. 

Despite thesee advantages for unstructured meshes, structured grids of quadrilateral elements in 2D 
and hexahedral elements in 3D are still used with great success in CFD.% l o  One reason is their ability 
to include multigrid acceleration techniques in a straightforward manner, while unstructured grids 
may encounter serious difficulties in generating multilevel grids.' ' * I 2  Moreover, integration of the 
governing equations on a structured grid requires less CPU time than on an unstructured one for the 
same number of nodes. Structured grids are also more suitable for turbulence modelling, particularly 
near solid walls where normals to the wall may be necessary. 

Furthermore, a certain degree of grid anisotropy may also be introduced for structured gnds 
through an improved moving-node scheme to be presented in this paper. A moving-node technique 
was originally introduced by G n o f f ~ , ' ~  generalized by Nakahashi and DeiwertI4 in the context of 
finite volume methods and applied to a finite element method (FEM) by Lohner et al.' All these 
schemes are based on a spring analogy where the grid is viewed as a network of springs whose 
stiffness constants represent a measure of error. The grid vertices are displaced until the equilibrium 
state of the spring forces is reached. Such techniques are characterized by their low cost and the 
conservation of nodal connectivity, but often can stall or diverge and tolerate only a limited range of 
nodal movement. 

This paper describes a directionally adaptive FEM using an edge-based error estimate on 
quadnlateral grids. The use of an appropriate error estimate, combined with the vector nature-of 
spring forces (i.e. their magnitude and direction), permits one to design a convergent adaptive 
procedure capable of achieving wider nodal movement and a high degree of grid anisotropy. The 
error of the numerical solution is evaluated using a bound available from finite element interpolation 
theory. The Hessian of a selected solution variable is computed and then modified to produce a 
positive definite matrix allowing one to define a measure of error, namely a Riemannian metric. The 
edge-based error estimate is thus expresscd as the length of the edges of the elements in this 
Riemannian metric. The construction of an anisotropic mesh may thus be interpreted as being a 
uniform mesh in the defined metric. This metric introduces and controls the magnitude as well as the 
direction of the grid anisotropy. A mesh movement scheme is then applied as the adaptive strategy, 
which, in contrast to the spring analogy technique used by Nakahashi and Deiwert,14 has no 
constraint on grid orthogonality. This leads to a simple and efficient nodal redistribution algorithm 
offering a greater range of grid point displacements. 
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To efficiently attain the goal of mesh independence, the adaptive procedure must be based on 
concepts that are independent of grid topology and adaptive strategy. Using an edge-based error 
estimate, the optimal grid for a fixed number of nodes is thus defmed as one in which the error is 
equidistributed over the edges. In the current paper, we restrict ourselves to the application of an r- 
method on structured meshes, although it can be easily combined with an h-method, to attain the 
desired error limit. 

2. FLOW SOLVER 

2.1. Governing equations 

The conservation form of the mass, momentum and energy equations describing an inviscid 
compressible flow may be written as 

Q,, + F,.i = 0. (1) 

where Q is the vector of the conservative variables and Fi is the vector of the convective fluxes. 
Indices i in the above formula refer to the axes of a Cartesian co-ordinate system, a comma denotes 
partial differentiation and the summation convention is applied. In 2D problems, the components of 
Q and Fi are 

where p is the density, vi are the velocity components, p is the pressure, 6 ,  is the Kronecker delta 
symbol and e is the specific total internal energy. 

This system is closed with the equation of state for a perfect gas, 

p = 0 - I)p(e - +vjvi), (3 1 
where y is the ratio of specific heats. 

2.2. Weak Galerkin formulation 

Equation (1) is multiplied by a weight function and integrated over the domain as 
The weak formulation is obtained by minimizing the residuals of (1) over the solution domain. 

where the weight functions W are identical, in a Galerkin finite element formulation, with the 
interpolation hc t ions  of the unknown variables. By making use of the Gauss divergence theorem, 
the weak statement 

is obtained, where r denotes the boundary of the domain Q and n,  is the ith component of the outward 
unit normal to the boundary r. 
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2.3. Temporal discretization 

The steady-state solution of ( 5 )  is obtained by an implicit time-marching formulation, with the 
discretization of the time-dependent term based on a backward first-order difference. Accordingly, 
equation ( 5 )  is expressed as 

1,: W ~ R  - F;+’ w , ~ ~ R  + ~ + ‘ n , W d r  = 0, I, Jr 

where AQ denotes the increment of the solution after a period of time At. 

applied,” yielding 
To solve the non-linear semidiscrete form (6),  a linearization in time about the time level n is 

AU 
AiAW,idR + AiniAUWdr = FiniWdT, (7) 

Jr 

where U=[p, v l ,  v2, elT is the vector of the primitive variables and L and Ai are the Jacobian 
matrices of the vectors Q and Fi with respect to U respectively. The superscript n is dropped for 
simplicity. 

2.4. Finite element space discretization 

approximated by bilinear shape functions as 
The computational domain is subdivided into quadrilateral elements where the solution vector U is 

J=I 

where UJ are the nodal values of the approximate solution Uh, OJ is the shape function associated 
with node J and N,, is the total number of nodes. 

Substituting equation (8) into the variational statement (7), one obtains the algebraic system of 
equations 

(M + K ) A ~ J  = -R, (9) 

where the mass matrix M, the influence matrix K and the residual vector R are given by 

A Galerkin FEM gives rise to central difference approximations of differential operators, which are 
non-dissipative by themselves. In order to suppress the tendency for odd-even node decoupling of the 
solution and to prevent unphysical oscillations near discontinuities, artificial dissipation terms are 
added to the governing equations in the form of Laplacians of primitive variables.” These additional 
terms are also treated in an implicit manner and the global algebraic system of equations is solved by 
a parallel Gauss elimination method. 
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3. GRID ADAPTATION 

Following the classical approach, the optimal mesh for a fixed number of elements may be defined as 
one in which the error is equidistributed over each element.I6 The adaptive strategy presented in this 
work, coupled to an edge-based error estimate, specifically aims to equidistribute the error over the 
edges of the elements. A node-moving scheme is then implemented, relocating the grid points along 
those directions where the error is high. 

3.1. Edge-based error estimate 

interpolation. A local error E, is defined over an element e to be 
Consider a 1D problem in which the solution variable g is approximated by g h  with linear 

ke =g-gh. (13) 

By expanding the solution g at one end of thc element e and provided that the nodal error is zero, the 
error Ee for linear interpolation over an element may be cast into the form 

d2gh I 1 
E, = --x(h - X) - , 

2 h2 e 

where h represents the element length and x is measured fiom one end of the element e. The root 
mean square (RMS) interpolation error over an element spanning the interval [0, h] may be defined 
as3 

Thus the interpolation for this 1 D problem is proportional to the product of the second derivative and 
the square of the characteristic length of the element, h. 

Extending these ideas to the 2D case, the second derivatives can now be replaced by the symmetric 
Hessian matrix 

Since g h  is linear for each element, the second derivatives have no representation. However, a weak 
formulation, combined with mass lumping, can be applied to recover an estimate of the second 
derivatives. This yields the expression 

where RI represents the elements sharing node I. After integration of (1 7) by parts, the nodal values 
of the Hessian reduce to 
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The Hessian matrix given by (1 6) may be diagonalized as 

H = R(a)ART(a), (19) 

where A is the diagonal matrix of the eigenvalues of H and R is the matrix of the eigenvectors. The 
transformation A is a scaling in the directions of the axes and R is a rotation with angle a that the 
eigenvector corresponding to the smallest eigenvalue ,I1 makes with the x,-axis. 

In order to obtain a symmetric, positive definite matrix, the Hessian is modified by taking the 
absolute value of its eigenvalues.” This results in 

where S = RJIAI. The transformation S of a unit circle would be an ellipse, rotated through an angle 
a, whose semi-major and semi-minor axes are the reciprocals of the square roots of the eigenvalues 
I),, I and 1i21 respectively (see Figure 1). Therefore, one may obtain a directionally stretched grid by 
mapping a uniform mesh using the transformation S. 

However, in the current approach a mesh with edges of equal length is sought in the transformed 
plane S’, where the length of a curve B is given by 

d(B) = 1’ J [ ~ ’ ( l ) ~ H ( l ) s ’ ( l ) ]  dl 
J O  

and s(/) is a parametric representation of the curve 8. 
Since If is a function of the space co-ordinates, equation (21) defines a Kiemannian metric. The 

modified Hessian H is computed and stored on a background mesh and thus the value of H at any 
position of the domain can be interpolated during the adaptive process on this mesh. The edge-based 
error estimate can then be numerically evaluated from (21) for each edge of an element. 

3.2. Moving-node scheme 

The adaptive strategy modifies the grid under the guidance of the error estimate to improve the 
quality of the numerical solution. Thus the use of an appropriate adaptive scheme is crucial for 
achieving the desired directionally adapted mesh. The proposed strategy relies on a node-moving 
scheme, also called nodal redistribution. As illustrated in Figure 2, the mesh may be viewed as a 

S 

Figure 1 .  Transformation of a unit circle by S, where u = I]., I-’/’ and b = l i 2 1 - ’ / 2  
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Figure 2. Spring analogy for a patch of elements 

network of springs whose stiffness constants represents the edge-based error estimate. The positions 
of the grid vertices may then be interpreted as the solution of an energy minimization problem. This 
yields for each vertex I 

where PI denotes the potential energy of the four springs sharing a node I and klJ are the associated 
four stifmess constants. These constants may be written specifically as 

where (1.11 indicates the Euclidean norm and d(x1, X J )  is the length of the edge [ x l ,  X J ]  in the 
Riemannian metric defined by (21). 

After simplifications, equation (22) reduces to the following system describing the equilibrium 
state of a spring network: 

C(X?'' - xJ"")k,"; = 0 .  
J 

By lagging xJ and klJ at the previous iteration m, equation (24) becomes 

and the position of the vertex I is updated according to the expression 

where w is a relaxation factor. The convergence of this scheme can be enhanced by using a Gaus+ 
Seidel algorithm with the latest values of xJ and klJ in (25 ) .  

In this procedure the boundary nodes are also free to move along their respective curves. The same 
algorithm as for the internal nodes is applied to compute their new positions, but they are projected 
back to their corresponding boundary curves. 

The grid adaptation procedure may be summarized in the following steps: 
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0 read a background mesh and the corresponding solution 
0 compute H on the background mesh 
0 current mesh is initialized by an initial mesh 
0 move the nodes of the current mesh as follows: 

DO m = 1, MAXITER 
DO inod= 1, NNODE 

Do iedge = 1, NEDGE 
0 determine H by interpolating on the background mesh 
0 compute spring constants by numerical integration of (23) 

ENDDO 
0 find new position of inod 
0 check quality of resulting elements sharing inod 
0 move inod to its new position 

ENDDO 
If (MAXDISP.LE. tolerance) exit the m loop 

ENDDO 

where NEDGE represents the number of edges sharing the node inod and MAXDlSP is the maximal 
displacement of all nodes for a particular iteration m. 

In the general case the background mesh serves only to compute and store the error estimate and 
hence could be different from the initial mesh. For the first few cycles of adaptation one can thus 
develop a crude error estimate on a coarse mesh to adapt a finer grid. 

Both flow solver and grid adaptation procedures are placed in an iterative loop which is repeated 
until the lowest value of a user-specified artificial dissipation coefficient is reached. In the following, 
each iteration of this loop will be called an adaptive cycle or level. 

4. NUMERICAL RESULTS 

For all the test cases investigated in this paper, the density solution is the flow variable used for the 
error estimate, although other choices such as pressure, Mach number or a combination of them could 
be used. Also, the background mesh is taken to be identical with the adapted mesh of the previous 
cycle for all adaptation cycles. 

4.1. Analytical test case 

Since the grid adaptation procedure contains some new aspects, it is important to investigate its 
effectiveness on an analytical case. The aim of the first example is therefore to demonstrate the 
capability of this procedure to equidistribute the interpolation error of a given function over the 
edges. A function, with strong gradients, in the form 

g(xl, x2) = tan-' [ 103(xfxi - 0.25)] (27) 

has been chosen over the domain [0, 21 x [0,  11. 
The initial mesh and corresponding isocontours of g are displayed in Figures 3(a) and 3(a) 

respectively. After 300 iterations of the mesh movement scheme the adapted mesh shown in Figure 
3@) is obtained. As illustrated in Figure 3(b), this mesh permits a better representation of the function 
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Figure 3. Initial (a) and adapted (b) meshes and corresponding isocontours, (a) and @), of g 
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Figure 4. Histogram of error over edges 

g. Figure 4 represents a histogram of the number of edges versus the error over these edges. In the 
ideal case all the edges would have the Same error. In practice a nearly Gaussian distribution is 
obtained, where the maximum error is reduced fivefold. 

The plot of the L2 and L ,  norms of node displacements in Figure 5 shows that the correction of 
position vertices dropped by a magnitude of two orders after 700 iterations. In contrast, the L ,  norm 
of the edge error stalls at the value of 0.55 after 170 iterations. 
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Figure 5. Node displacement and maximum error-edge convergence histories 

Figure 6. Adapted grids and corresponding Mach number contours for cycles (a), (c) and (0 
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Figure 7. Enhancement of Mach number distribution on stagnation line with grid adaptation cycles 
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Figure 8. Comparison of stagnation line results of present approach with other numerical results 

4.2. Hypersonic flow over a cylinder 

In this example the proposed methodology is applied to a hypersonic flow over a cylinder. This 
calculation was performed with a freestream Mach number of 6 and zero angle of attack. The initial 
finite element mesh, shown in Figure 6(a), is composed of 33 x 53 nodes distributed uniformly in 
both directions. The corresponding Mach number contours of the flow are depicted in Figure qa). 
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Figure 9. Convergence histories of the flow solver and the adaption procedure 
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Figure 10. Definition of compression comer test case 

The adapted meshes in Figure 6(c) and 6(f) require two and five levels of adaptation respectively. The 
corresponding flow field contours, Figure 6(6) and 6(i), demonstrate the benefits of the grid 
adaptation in resolving a detached bow shock. 

Figure 7 illustrates the enhancement of the Mach number distribution on the stagnation line with 
grid adaptation cycles. The profiles of temperature and pressure along the stagnation streamline are 
compared in Figure 8 with the results of Wada and Liou.18 Overall, this figure reveals good 
agreement between the adapted solution and Wada’s results. Slight discrepancies in pressure 
distributions are, however, observed near the wall owing to the different manner of implementing the 
wall boundary conditions. It must be pointed out that Wada’s solution was predicted on a finer grid 
with an advection upwind splitting method (AUSM), proven superior to most standard schemes of 
flux-difference splitting and flux-vector splitting. 
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i------- 

Figure 1 1 .  Adapted grids and corresponding density contours for cycles (a), (c) and (f) 

The convergence histories of the flow solver and the grid adaptation procedure are presented in 
Figure 9, where the jumps in the curves represent the beginning of each new cycle. For a given value 
of the artificial dissipation coefficient the L2 norm of the flow residual at that cycle is lowered by 
three orders of magnitude and then the mesh nodes are displaced 500 times. Figure 9 shows that the 
use of a local-time stepping technique with a high CFL number of 350 permits one to reach machine 
accuracy in few iterations. 



Figure 13. Convergence histories of flow solver (left) and adaption procedure (right) 

4.3. Supersonic compression corner 

The third test case is a flow at Mach 3 over a 16" ramp (see Figure 10). This example tests certain 
features of the algorithm, including the resolution of the oblique shock and its proper angle. The 
initial coarse mesh composed of 44 x 27 nodes is shown in Figure 1 l(a), while the resulting density 
contours are presented in Figure 1 1(a). The results after two and five levels of adaptation are depicted 
in Figures 1 l(c), 1 I(&) and 1 l(f), 1 l ( b  respectively. Comparison of Figure 1 l(a) and 1 l ( b  
demonstrates the important role of the grid adaptation in capturing a sharp shock at the correct angle. 
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Figure 14. Initial and final adapted grids with corresponding Mach number contours 

The magnification of the mesh in the shock region presented in Figure 12 shows that the 
quadnlateral elements are oriented in the direction of the shock with an aspect ratio as high as 50. 
Figure 15 clearly illustrates the superiority of the adapted solution in approximating the exact 
solution. In fact, the use of an appropriate grid also allows the reduction of the artificial dissipation 
coefficient by a factor of 10. The convergence history of the flow solver and the node displacement 
convergence histories are presented in Figure 13. 
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Figure IS. Enhancement of the C, distnbutlon on the body wall with gnd adaptation cycles 

lc-02 -- 

le-09 - 
lc-I0 - 

Ic-I1 - 

0 20 40 60 80 100 120 140 160 0 500 loo0 1500 2000 2500 3 0  3500 4ooo 4500 
Iteraurns I~crarions 

Figure 16. Convergence history of flow solver 

4.4. Hypersonic flow over a double ellipse 

In this test case a double-ellipse profile is placed in a Mach 8 flow at 30" angle of attack. Since it 
was introduced in the Workshop on Hypersonic Flows for Reentry Problems in 1990, this benchmark 
has become a great challenge for testing compressible flow solvers. The flow field is characterized by 
a strong detached shock wave followed by a moderate canopy shock. Therefore the use of standard 
flow solvers on a uniform grid tends to produce smeared shocks. 
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The computations were initiated on 45 x 124 (5580) grid nodes, Figure 14(a), and the 
corresponding solution is shown in Figure 14(a). The adapted grid, Figure 14(g), is obtained after 
six levels of adaptation. The adapted solution is presented in Figure 14(g) and it can be clearly seen 
that the detached and canopy shocks are well-resolved. 

The body pressure coefficient (C,) distributions of initial and adapted solutions are compared with 
Chalot et al.’s results” in Figure 15. This plot demonstrates the important role of the adapted grid in 
shock capturing through mesh alignment and the ensuing reduction of the required artificial 
dissipation in the flow solver. Chalot’s computation was carried out by an FEM on an adapted 
triangular mesh of 6721 nodes. As displayed in Figure 16, full convergence of the flow solver 
requires 150 iterations, while 700 iterations are used for each adaptation cycle. 

5.  CONCLUSIONS 

An adaptive finite element method with directional features, using an edge-based error estimate on 
quadnlateral meshes, has been described and applied to high-speed flows. The error of the numerical 
solution is measured by it second derivatives and the resulting Hessian tensor is used to define a 
Riemannian metric. An improved mesh movement strategy with no orthogonality constraints is 
introduced to equidistribute the lengths of the edges of the elements in the defined metric. The 
adaptive procedure has been proven to be effective on an analytical test case, where a nearly Gaussian 
distribution of the error is obtained. The flow solver, combined with the proposed grid adaptation 
method is then validated on a supersonic compression comer, capturing the oblique shock with high 
resolution and the correct angle. The methodology is also tested on hypersonic flows and other 
numerical results have been correctly reproduced on coarser meshes. Current work involves the 
extension of the approach to 3D hexahedral and tetrahedral grids. 
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